Protection from Chemical and Biological Threats

Thomas P. Kuchar, P.E.

Battelle Memorial Institute

Agenda

- Chemical Biological Protection Overview
- CBR Agents and Their Release Methods
- Protection Assessment
- Applications
- Summary & Questions

CB Protection Overview

- Threats to infrastructure are constantly evolving
- Chemical and biological (CB) protection is becoming a key element of protection
- Protective measures may be applicable to multiple protection elements
- CB requirements are significantly different than those for conventional weapons
 Battelle

CB Protection Overview

Why are buildings vulnerable to CB attack?

 Containment of CB agents within a confined space allows concentrations to rapidly reach and sustain lethal levels

CB agents are effectively transported throughout a building

by mechanical systems

 Population densities are high in buildings or vehicles

Potential to deliver agent covertly

 Numerous adsorbing surfaces that make building restoration difficult
 Battelle

CBR Agents and Their Release Methods

CB Agents

- Chemical Agents (sarin, VX, mustard, etc)
- Biological Agents (anthrax, plague, cholera, etc)
- Toxic Industrial Chemicals (ammonia, formaldehyde, etc)

Release Types

- Airborne external standoff, external proximate, internal
- Surface
- Foodborne
- Waterborne

CB Protection Program (Continued)

CB Protection Options

Technology Cost vs. Level of Protection

Expedient Collective Protection

- Use of an expedient fan filter assembly to protect selected region of a building
- Independent of building HVAC system
- ECP provides filtered air and pressurization to the protective envelope similar to that of an Integrated Positive Pressure CP system
- Protection provided by ECP is dependent
 - Filter efficiency
 - Protective envelope leakage rate
 - Location of assembly
- Requirements for effective ECP
 - advanced warning of hazard
 - effective sealing of envelope
 - centralized control of HVAC system

Ambient Pressure Collective Protection

- Use of low efficiency gas/particulate filters within existing AHUs to continuously remove CB agents released externally and internally
- Goal is to decrease the dependency on an early warning system by providing continual low level protection at a low cost
- APCP provides protection prior to taking actions to seal the building.
- Protection provided by APCP is dependent upon:
 - Filter efficiency
 - Air exchange rate of HVAC system
 - Air exchange rate with the exterior through building leakage
 - Threat concentration
- Requirements for effective APCP
 - effective sealing of envelope
 - centralized control of HVAC system

Integrated Positive Pressure Collective Protection

- Use of high efficiency gas/particulate filters integrated with the existing HVAC system to remove CB agents released externally
- IPPCP may be designed to operate continuously or in the standby mode.
 Continuous systems are operationally obtrusive and standby systems require early warning
- Goal is to prevent infiltration of external contaminants by positively pressurizing the entire building utilizing clean air. Filters provide a removal efficiency in excess of 99.999%.
- Protection provided by IPPCP is dependent upon:
 - Advanced warning (standby)
 - Overpressure level achieved
- Requirements for effective SBIPPCP
 - advanced warning of hazard (standby)
 - effective sealing of envelope
 - centralized control of HVAC system

CB Protection Applications

Chemical Stockpile Emergency Preparedness Program (CSEPP)

- Conducted CB protection assessments for buildings adjacent to the seven U.S. chemical agent stockpile sites
- Assisting local subcontractors with the design, selection, and

Battelle

DTRA Smart Building

- Developed and implemented an extensive CBR protection system for the FBI Operations Center in the continental U.S.
- Objective was to design a transportable protection system that can be utilized at other locations

CB Protection Applications (Continued)

UMMC/Shock Trauma

- Conducted a threat, vulnerability and protection assessment of the new UMMC emergency care and shock trauma facility
- Recommendations for providing protection to medical personnel and for implementing mass casualty decon were implemented into the facility design

Project Tie Down - Pentagon

- ■Developing an integrated NBC protection and early warning system for the Pentagon reservation
- ■Effort includes a protection assessment, design, cost/benefit analysis, and installation

Battelle

CB Protection Applications (Continued)

DARPA Immune Building

- Identifying solutions for protecting, restoring, and collecting forensic evidence in the event of a CB incident against a military building
- Conducting full-scale feasibility experimentation in a 30,000 sq ft barracks building

Battelle

CB Protection of Military Vehicles

 Worked with DoD to develop and integrate advanced collective protection technologies into military vehicles (tanks, assault vehicles)

Summary

 Prominent buildings are vulnerable targets and will only provide negligible protection to occupants

 CB protection systems are currently being applied to a number of key buildings

 A variety of CB protection options exist ranging from low cost / low PF methods to high cost/high PF methods

 Research is ongoing to characterize the problem and to provide more cost effective solutions

Contact Information

For further information regarding CB Building Protection or Battelle, please contact:

Michael C. Janus, P.E.

Manager, Engineering Products &
Services

Battelle Edgewood Operations
2012 Tollgate Road, Suite 206
Bel Air, MD 21015
janus@battelle.org
410-569-0200
410-569-0588 (FAX)

Thomas P. Kuchar, P.E.
Project Manager, Engineering
Products & Services
Battelle Edgewood Operations
2012 Tollgate Road, Suite 206
Bel Air, MD 21015
kuchart@battelle.org
443-512-8153 (direct)
410-569-0200
410-569-0588 (FAX)